Spectral Theory of Pseudo-Ergodic Operators
نویسندگان
چکیده
منابع مشابه
A ug 2 00 0 SPECTRAL THEORY OF PSEUDO - ERGODIC OPERATORS
We define a class of pseudo-ergodic non-self-adjoint Schrödinger operators acting in spaces l 2 (X) and prove some general theorems about their spectral properties. We then apply these to study the spectrum of a non-self-adjoint Anderson model acting on l 2 (Z), and find the precise condition for 0 to lie in the spectrum of the operator. We also introduce the notion of localized spectrum for su...
متن کاملSpectral theory of transfer operators∗
We give a survey on some recent developments in the spectral theory of transfer operators, also called Ruelle-Perron-Frobenius (RPF) operators, associated to expanding and mixing dynamical systems. Different methods for spectral study are presented. Topics include maximal eigenvalue of RPF operators, smooth invariant measures, ergodic theory for chain of markovian projections, equilibrium state...
متن کاملOn Spectral Theory of Quantum Vertex Operators
In this note we prove a conjecture from [DFJMN] on the asymptotics of the composition of n quantum vertex operators for the quantum affine algebra Uq(ŝl2), as n goes to ∞. For this purpose we define and study the leading eigenvalue and eigenvector of the product of two components of the quantum vertex operator. This eigenvector and the corresponding eigenvalue were recently computed by M.Jimbo....
متن کاملTopics from spectral theory of differential operators
Introduction 2 1. Self-adjointness of Schrödinger operators 3 1.0. Solving the Schrödinger equation 3 1.1. Linear operators in Hilbert space 7 1.2. Criteria for (essential) self-adjointness 13 1.3. Application to Schrödinger operators 18 2. Hardy-Rellich inequalities 21 2.0. Relative boundedness 21 2.1. Weighted estimates 24 2.2. Explicit bounds 26 3. Spectral properties of radially periodic Sc...
متن کاملLyapunov Exponents and Spectral Analysis of Ergodic Schrödinger Operators: a Survey of Kotani Theory and Its Applications
The absolutely continuous spectrum of an ergodic family of onedimensional Schrödinger operators is completely determined by the Lyapunov exponent as shown by Ishii, Kotani and Pastur. Moreover, the part of the theory developed by Kotani gives powerful tools for proving the absence of absolutely continuous spectrum, the presence of absolutely continuous spectrum, and even the presence of purely ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2001
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s002200000352